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Abstract

This paper presents a three-dimensional analysis of rectangular orthotropic plates by employing the
differential quadrature (DQ) method. The derivation of the governing equations from the governing equa-
tions and the stress—strain relationship of the three-dimensional elasticity model is detailed. The constrained
conditions of the orthotropic plate edges are given. The governing equations and boundary conditions are
first normalized and discretized according to the DQ procedure. Example problems pertaining to the bending,
buckling and free vibration of orthotropic plates with generic boundary conditions are selected to illustrate
the simplicity and applicability of the DQ method. The convergence characteristics of the DQ method are
first obtained based on numerical studies, after which, the DQ solutions are compared, where possible, with
exact solutions. It is found that the DQ method yields accurate results for the plate problems under
investigation. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Conventional numerical methods like the h-version finite element method, the finite difference
method, and the boundary element method usually require a large number of grid points for
accurate computation of results. Recently, an alternative numerical method, the differential quad-
rature (DQ) method, was introduced to address this problem. It was found to be rather successful
in solving problems in structural mechanics (Bert and Malik, 1996). It was reported that the DQ
method was able to rapidly compute accurate solutions for partial differential equations by using
only a few grid points in the respective solution domains (Bert et al., 1988a).
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The original DQ method was first used for structural mechanics problems by Bert and his
associates (Jang, 1987; Bert et al., 1988a, b, 1989; Striz et al., 1988; Jang et al., 1989). Later Quan
and Chang (1989a, b) and Shu and Richards (1992) improved on the DQ method by introducing
a recurrence relationship which can be used to generate weighting coefficients for any higher-order
derivatives. Their method of calculating the weighting coefficients rids the DQ method of ill
conditioning problems which have plagued the previous method of obtaining the weighting
coefficients. Du et al. (1994) employed this method of calculating the weighting coefficients to
study structural mechanics problems.

Prior to the year 1995, the application of the DQ method in structural analysis was limited to
Kirchhoff-Love thin plates and Bernoulli-Euler slender beams (Jang, 1987; Chen, 1994; Farsa,
1991; Malik, 1994). Some applications of the DQ method in thick plates were subsequently reported
(Han and Liew, 1995; Malik and Bert, 1995). Wang (1995) and Wang et al. (1995) also solved
laminated plates and circular plates with varying thickness using the DQ method. In 1997, the
application of the DQ method was extended to the three-dimensional free vibration analysis of
isotropic plate problems (Teo and Liew, 1997). Teo (1998) used the DQ method to solve bending,
buckling and free vibration of three-dimensional isotropic and orthotropic plates. The DQ method
was also used by Malik and Bert (1998) to the solution three-dimensional vibration of thick plates.

Numerous methods have been employed by earlier researchers for solving plate problems based
on three-dimensional elasticity theory (Srinivas and Rao, 1969, 1970, 1973; Srinivas et al., 1969,
1970; Iyengar et al., 1974; Leissa and Zhang, 1983; Liew et al., 1993, 1994, 1995a, b; Young and
Dickinson, 1995). These three-dimensional solutions are extremely useful in evaluating the accuracy
of approximate results, for example, in the case of two-dimensional plate theories. To the authors’
knowledge, the methods employed by these researchers are either limited to certain boundary
conditions or to the plate problem itself. It is the purpose of this paper to provide useful literature
on orthotropic plate problems in terms of bending, buckling, and free vibration analyses with
generic boundary conditions. The version of the DQ method employed in this study was originated
by Quan and Chang (1989a, b), and Shu and Richards (1992). It uses a recurrence formulation to
compute the weighting coefficients of higher-order differential equations.

This paper is organised into several sections. First, the DQ approximations are highlighted after
which the three-dimensional elasticity equilibrium equations for plate analysis and the boundary
conditions are outlined. Next, the normalisation and discretization of the three-dimensional linear
elasticity equations and boundary conditions are presented. In the section on numerical results
and discussion, the convergence characteristics and accuracy of the DQ method are demonstrated
through the solving of numerical test examples for which available exact solutions or numerical
values are used for comparison. Finally, some conclusions are drawn from this study.

2. Differential quadrature method

To illustrate the DQ approximation, a one-dimensional function, f(x), shall be used here.
According to the DQ method, the nth derivative of a function f{(x) can be approximated by
fix) X

o =Y APf(x) fori=12,...,N, n=12,...,N—1 (D)
j=1
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where N is the number of discrete points chosen in the solution domain. The term ‘A’ represents
the weighting coefficient at the ith point in the solution domain. The details for calculating the
weighting coefficients as used in this paper can be found in Shu and Richards (1992).

For a multi-dimensional case, each dimension is treated separately. The three-dimensional
approximation of a function f{(x, y, z) required for the present analysis is shown below (Teo and
Liew, 1997):

A s 5w T <3 an (e
;;2 ) ~ NZI B 2;{ ) ~ i C2f (2e.f)
jx <§£> B Nz AP NZ B fim (2g)
(jx <g> ijk ~ 1%:1 A ,,%31 Cwﬁf" (2h)
;; <2§> . N N; B %} cf (2i)

In the above equations [eqns (2)], 4, B and C denote the weighing coefficients at the ith, jth and
kth point for the partial derivative of the function with respect to the x, y and z solution domain,
respectively. N, N,, and N, are the total number of discrete points chosen in the x-, y- and z-
directions.

3. Basic equations
3.1. Governing equations

The equations of motion for an object in the x-, y-, and z-directions without body force (Srinivas
and Rao, 1970; Wittrick, 1987) can be written as:

aO’x + af,\»y + a’E)cz _ @ _|_P @ + 2 (3)
ox  dy oz T Taxt T oy? et

ot, o, or. O 0

Ty g, n L _ p J+P,—U+pwzv @)

ox " dy oz Toaxr oy’
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The stress—displacement relationships are shown below:
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In the above equations [eqns (3)—(6)], 0., o, and o. represent the stresses in the x-, y- and z-
directions and t,, 7,. and 7, are the shear stresses in the x—y, x—z and the y—z planes. Cy;, C,,, Cs3,
C3, Cys, Cyu, Cssand Cyq are the nine elastic constants for orthotropic materials. The displacements
in the x-, y-, and z-directions are represented as u, v, and w, respectively; the angular frequency of
vibration is represented by the symbol w; the density is represented by the symbol p. The terms P,
and P, are the destabilizing loads on the body in the x-, and y-directions, respectively. By
substituting eqns (6) into eqns (3)—(5), the equilibrium equations in terms of the displacements
(governing equations) can be obtained as follows:

0*u 0*u 0*u 0%v
o2 +C66§ +C55g +(C12+C66)M
o*w o0%u 0%u s
+(C13+C55)m =P, <8xz +¢5y2>+pw u (7)
. 7 0x dy °% ox2 2 0y? o2
o*w v o0*v 5
+(Cas +C44)m =P, <8xz +¢6y2>+pw v (8)
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0?u 0%v 0w
(Cis +C55)m +(Cy;s +C44)m +Css e

L 62W+C o*w P 62w+¢8zw ow? )
— — =P, — w’w
Moy T TV o2 S \ox? oy* P
The term ¢ in eqns (7)—(9) is the ratio of the destabilizing loads. It is defined as:
P,
o= (10)
Ty

3.2. Boundary conditions

For the three-dimensional analysis of a plate, boundary conditions need to be applied to all the
six faces. The boundary conditions at the four faces of the plate where x =0, a and y = 0, b are
called edge boundary conditions. The boundary conditions at the top and bottom surfaces of the
plate where z =0, ¢ are called lateral surface boundary conditions. Below are the equations
describing the boundary conditions.

3.2.1. Edge boundary conditions
e Simply supported edge boundary conditions (S):

Atx=0anda: o,=0; v=0;, w=0 (11a)

Aty=0andb: o,=0; u=0; w=0 (11b)
e Clamped edge boundary conditions (C):

u=0;, v=0, w=0 (12)

3.2.2. Lateral surface boundary conditions

In this paper, a uniform load ¢ is applied to the top lateral surface of the plate for bending
analysis.
e Loading on the top surface:

=0 (13a)
Onz=c¢ 0.=0;, 7.=0; 17,=0 (13b)

Onz=0: 0.=—¢q;, 7.=0; 7,

For buckling and free vibration analyses, the lateral surfaces are considered free.
e Free lateral surface condition:

=0 (14)

0.=0; 7.=0; 1,

4. DQ formulations

The DQ procedure for solving a system of partial differential equations is first to normalize the
geometry of the plate and then discretize it into grid points according to the directions of the
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solution domain. The discretizing process involves applying the DQ approximation to the equi-
librium equations and the boundary conditions.

4.1. Normalization

The following non-dimensional parameters are introduced in the normalization process:

X y z
=—; Y= Z=- 15a—
X pE b . (15a—)

v w
U=—": V=- W=— 15d—f
=ty ow=" (15d-1)
a c c )
o= B=rs = (15g-)

In the above equations [eqns (15)], @, b and ¢ represent the dimensions of the plate in the x-, y-
and z-directions, respectively. Substituting eqns (15) into the equilibrium equations [eqns (7)—(9)]
results in the following normalized governing equations:

) 0’U 5 0’U 0’U 5 o’V
Y CllaXz +p C666Y2 +Css — 07> +7y (C12+C66)6X6Y
oW 0*U ,0°U 5
‘H’(CH"'Css)aXaZ Px|: x> + B 8Y2i| ch U (16
0’U o’V o’V o’V
B*(Ci2+ Ces) 8X6Y+V2C66ﬁ+ﬁzczzay2 +Chy—> 07
0w o’V , 0V 5 5
+°‘ﬁ(C”+C44)aYaz [ QX2+¢>/3 aYJ pw*ctV (17)
0’U o’V . 0*wW
y(CIS_'_CSS)@X@Z_H)(CB—'_CM)&Y@Z Csﬁ
oW 0w 0w w
+ 2C 7+C _— = X 2 2 W 18
Py ¥ [V oz T ayz} porc W (18)

By substituting the non-dimensional parameters into the stress displacement equations [eqns
(6)] and the boundary conditions [eqns (11)—(14)], one can obtain the following normalised
boundary equations:

e Simply supported edge boundary condition (S) for X =0, 1:
ou  Cnhaov CisadW
Yox ey ov e, oz

V=0 (19b)

=0 (19a)
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W =0 (19¢)

e Clamped edge boundary condition (C):

U=0 (20a)
V=0 (20b)
W=0 (20c)

e Loading condition at the top surface:

"enox e avyte, iz "o, (21a)

yaaﬁ(V * le] =0 (21b)

ZIZ/ +op aaz/ =0 21¢)
e Free lateral surface condition:

et S AL (222)

yaa?(/ * glzj =0 (22b)

W “ﬂ (22¢)

4.2. Discretization

According to the differential quadrature procedure, the normalized governing equations [eqns
(16)—(18)] can be discretized into the following form:

Nz
Y Cll Z All)Ul/k+ﬂ C66 Z B/m im/\'+C55 Z Cg{i)UUn

m=1 n=1

Ny Ny Ny Nz

‘H’ (C12+Ces) Z A(l) Z B%}thk +7(Cy5+Css) Z A(l) Z C(I)I’szn

m=1 n=1

m=1

Ny Ny
= PX |:V2 Z A§[2) U[jk+¢ﬁ2 Z B5n21) Uin1k:|_pw2c2 Ui//( (23)
=1
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Ny Ny Ny Ny

ﬁz(C12+C66) Z AI(II) Z B_}/L)U/mk—i_’yzcé() Z AI(IZ) Vl//c+ﬁzc22 Z Bj(‘rzn) I/imk
=1 =1 m=1

m=1

Ny Ny

+C44 Z Ckn I/,/,1+O(ﬁ(C23+C44) Z B(l) Z C](C:l) imn

m=1

Ny
= Px |:V2 Z Al(2) V/]k+ ¢ﬂ2 Z B]m zmk:| pwzcz Vi/k (24)
=1 m=1
Ny Ny, Ny N,
y(Cl 3 + CSS) z At('ll) Z Cﬁl) U/jn ‘H)(Cza + C44) z BEIIn) Z C;\lr) I/[mn
=1 n=1 m= n=1
Ny Ny Ny

+V2C55 Z At('IZ) Vsz;k +ﬁ2C44 Z Bﬁ Wi+ Cs3 Z Ckn ijn
=1

m=1 =

Ny
= Px |:V2 Z Al(2) W/]k+¢ﬁ2 Z B/m lmk:| pw2C2 I/I/ifk (25)
=1

m=1

Similarly, the differential quadrature procedure is applied to the normalized boundary conditions
[eqns (19)—(22)]. These equations are discretized as follows:
e Simply supported edge boundary condition (S) for X =0, 1:

Ci, &
v Z A(I)U//k‘H’Ci > B(I)Vzmk'f‘ ~ Z Clo Wy =0 (26a)
11 m=1 ll n=1
Vie =0 (26b)
Wy =0 (26¢)

e Clamped edge boundary condition (C):

ik = a
Uy =0 (27a)
V=0 (27b)
y
iik = C
Wy =0 (27¢)

e Loading condition at the top surface:

Ny Nz

C C —
2 2 (I)UI/A ‘H’i Z B/m zmk+ﬁ z C(l) 11n :ﬂ

28a
yclllz ]]m 1 Clln 1 Cl] ( )

Ny
z COU, 47 Y AP Wy =0 (28b)
=1
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NZ NY

Z C;»L) I/[jiz + OCﬂ Z B;rln) I/I/imk = 0 (280)

n=1 m=1

e Free lateral surface condition:

yC Z A(I)Ul/k—’_’yi Z B/m imk + a Z C(l)VViin = 0 (293)
111/= I] m=1 11 n=1
Ny Nz
Y Z Az(ll) lek+ Z C;(L) U{in = 0 (29b)
=1 n=1
Ny, Ny
Z Cl(c}z) Ijﬂ+aﬁ Z B}rln) I/I/imk =0 (290)
n=1 m=1

5. Method of solution

For bending analysis, the terms P,, P,, and w in eqns (3)—(5) are set to zero. Hence, the resulting
discretized governing equations for bending analysis become:

Ny Ny Nz
PV Cii Y, AP U+ B Cos Y, BG) Ui+ Css Y, Ci2 Uy,
I=1 m=1 n=1
Ny Ny Ny Ny
+V2(C12+C66) Z AP Z B;'ln) Vi +9(C 15+ Css) Z A,(JI) Z CL) W, =0 (30)
=1 m=1 =1 n=1
NX NY NX NY

B*(Cia+Coe) 3, A Y B Ui+ Coo Y, AP Vi +BCay Y, B Vi
=1 m=1

m=1 =1

Ny

Ny
+C44 Z C(Z) ”,,,+OCﬁ(C23+C44) Z B;’iln) Z CI((L) I/I/vimn = O (31)
m=1

n=1

Ny Ny Ny

,})(CIS-’_CSS) Z AI(‘II) Z Cl(c}l)Ul]n+y(C23+C44) Z B(l) Z CI(C}I) imn
=1 n=1

m=1

Ny Ny Nz

+V2C55 Z AI('IZ) I’Vljk‘i‘ﬂzcm Z B_Eii) Wi+ Cs3 Z C/(jz) VV:;/n =0 (32)
=1 n=1

m=1

For buckling analysis, the term w in eqns (3)—(5) is ignored. Hence, the resulting discretized
governing equations for buckling analysis become:
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Ny Ny Ny
2 2 2 2 2
Y C‘II Z Az(l )UUk+ﬁ C66 Z B}m) Uimk+ CSS Z C}cn) U{jn
I=1 m= n=1
Ny Ny Ny Nz

+V2(C12+C66) Z Agll) Z B_})ln) Vi +7(Cr3+ Css) Z Az(’ll) Z Cl(al?) VVljn
=1 m=1 =1 n=1

Ny Ny
= Px |:V2 Z Al(l2) UI//€+¢ﬁ2 Z Bg)zn) Uimk:| (33)
=1 m=1

Ny Ny Ny

ﬁz(C12+C66) Z AI(II) Z B§/11) Ulmk ‘H’ C66 Z Atl VI/A +ﬁ2C22 Z B/m Vzmk
=1

m=1 m=1

Nz Ny

+C44 Z Ckn Vl/)l+aﬁ(c2?+c44) Z BEI) Z C(l) lmn

m=1

Ny Ny
_p. [w S APV, B S BY V} (34)
=1

m=1

Ny Nz Ny

P(Ci3+Css) Z Ay Z C(I)U11n+V(C23+C44) Z B;;ln) Z Ci Vi
=1

n=1

Ny Ny Nz

+y C Z Azl WI//(+ﬂ2C44 Z B]l%’l) Wn‘lk+c33 Z Ckn ijn

m=1

Ny Ny
= Px |:V2 Z AI(IZ) I/I/Ijk+¢ﬁ2 Z B(/rzn I/I/imk:| (35)
=1

m=1

For free vibration analysis, the terms P,, P, in eqns (3)—(5) are set to zero. Hence, the resulting
discretized governing equations for free vibration analysis become:

Ny
yzcll Z A UI/k+ﬁ2C66 Z B/rzn)Um1k+C55 Z C )Ul/n
=1

m=1

Ny Ny Ny Nz

+7y (C12+C66) Z A(]) Z B}L) Vi +7(C13+ Css) Z A,(/I) Z C}J) I’szn = —PCUZCZUU/( (36)

m=1 =1 n=1

Ny Ny

ﬁ (Ci2+Ce) Z A(l) Z Bﬁ)ln)U/mk—f_’y Ces Z Azl)Vl/k+ﬁ2C2 Z B/m Vi

m=1

Nz Ny

+Cyy Z CRViut+ap(Crs+Cay) >, BY) Z Clod Wi = —pa* Vi (37)

n= m=1 n=
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NX NZ NY NZ
P(Cr5+Css) Z A Z Ci) Uy +79(Ca3 4+ Cyuy) Z B};L) Z Ci Vi
=1 n=1 m=1 n=1
Ny Ny Nz
‘H’chs Z Agzz) VVka + .32 Cys Z B;')Zn) Wi +Cs3 Z Cl(j,) I/I/ijn = —szcz VVuk (33)
=1 m=1 n=1

The determinant of the matrix to be solved for a solution domain with a grid size of N, x N, x N,
is 3x N, x N, x N.), because for every point in the solution domain there are three conditions that
need to be satisfied, i.e., the three governing equations or the three equations describing the
boundary condition under consideration.

The points on the lateral surface of the plate are described by either the loading condition ( for
bending analysis) or the free lateral surface boundary (for the buckling and free vibration analyses).
The points along the edges of the plate are described by the respective edge boundary conditions.

The grid pattern used in this study is determined by the following function:

1 (i—Dm
030 = > <1—cos N1 ) (39)
In eqn (39), ©(i) can be the x(i), y(i) or z(i) co-ordinate of the ith points considered.

In this study, the programming language used is FORTRAN 77. The computation is
implemented using a Digital Alpha Server 8400 5/440 system.

6. Results and discussion

The orthotropic material used for the implementation of the DQ solution corresponds to the
properties of the Aragonite crystal (Bisplinghoff et al., 1965) shown in Table 1.

In presenting the solution for the bending of an orthotropic plate, the non-dimensional par-
ameters used for deflection, stress in the x-direction, and stress in the y-direction are C,,w/cq, 0./q,
and o,/q, respectively. For buckling analysis, the non-dimensional buckling factor, k, is defined as

k= nyznz/cll (40)

For free vibration analysis, the non-dimensional frequency parameter, 4, is defined as

A =w/ pc?|C, 41)

Table 1
Properties of Aragonite crystal

Crn/Cyy = 0.543103 Cy/Cyy = 0.530172
C1/Cyy = 0.23319 Cp/Cyy = 0.010776
Cys/Cyy = 0.098276 Coo/C1y = 0.262931
Css/Cyy = 0.159914 Cua/Cyy = 0.26681
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To clarify the notation used to describe the boundary conditions, we shall use the SCSC plate as
an example. The description ‘SCSC’ means the plate has sides X = 0 and X = 1 simply supported
and the sides ¥ = 0 and Y = 1 clamped.

Since this present method of calculating the weighting coefficients rids the ill-conditioning
problems, the authors hence decided to calculate the results presented in this paper till a maximum
grid size of 13 x 13 x 13. It is deduced that the result will not be worst off even when more grid
points are used.

6.1. Bending analysis

Tables 2—4 show the convergence and accuracy studies of the deflections, and stresses of a
homogeneous SSSS orthotropic plate with aspect ratios of 0.5, 1.0 and 2.0, respectively. The

Table 2
Convergence and accuracy studies of deflections and stresses in homogeneous SSSS orthotropic plates (a/b = 0.5) under
uniform surface load

Cuw/eq o./q 0,/q
cla Grid size X=Y=2Z=0.5) X=0,Y=Z=0.5) X=0,Y=2Z=0.5)
0.05 5x5x%x5 —21,924.8 274.317 94.3799

TxTx7 —21,407.2 260.562 77.3116
9%x9x%x9 —21,542.4 262.656 79.6751
IIx11x11 —21,542.5 262.671 79.5721
13x13x13 —21,542.3 262.687 79.5362
Exact solution' —21,542.0 262.67 79.545
Reissner’s theory! —21,542.0 262.07 79.337
Classical plate theory' —21,201.0 262.26 79.121
0.10 5x5x%x5 —1435.66 68.9771 24.0100
TxTx7 —1399.88 65.3930 19.6352
9%x9x%x9 —1408.48 66.0219 20.2404
IIx11x11 —1408.51 65.9385 20.2050
13x13x%x13 —1408.48 66.0122 20.2122
Exact solution' —1408.5 65.975 20.204
Reissner’s theory' —1408.4 65.379 20.001
Classical plate theory' —1325.1 65.564 19.780
0.14 5x5x%x5 —395.419 35.4730 12.5246
TxTx7 —384.968 33.5253 10.2163
9%x9x%x9 —387.244 33.9277 10.5426
IIx11x11 —387.257 33.8135 10.5054
13x13x13 —387.248 33.9035 10.5314
Exact solution' —387.23 33.862 10.515
Reissner’s theory’ —387.27 33.265 10.312
Classical plate theory' —344.93 33.451 10.092

!'Srinivas and Rao (1970).
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Table 3
Convergence and accuracy studies of deflections and stresses in homogeneous SSSS orthotropic plates (a/b = 1.0) under
uniform surface load

Ciwleq o 0,/q
cla Grid size X=Y=Z=0.5) X=0,Y=27Z=0.5) X=0,Y=272=0.5)
0.05 5x5x%x5 —10,174.6 147.423 91.1932
TxTx7 —10,426.7 144.115 86.9235
9%x9x%x9 —10,443.3 144.328 87.0700
1Ix11x11 —10,443.5 144.285 87.0825
13x13x13 —10,443.5 144.339 87.0900
Exact solution’ —10,443.0 144.31 87.080
Reissner’s theory' —10,442.0 143.87 86.921
Classical plate theory' —10,246.0 144.39 86.487
0.10 5x5x%x5 —673.563 36.9578 23.3322
TxTx7 —687.561 35.9110 22.1651
9%x9x%x9 —688.659 36.0766 22.2311
1Ix11x11 —688.633 35.9740 22.1908
13x13x13 —688.626 36.0652 22.2334
Exact solution' —688.57 36.021 22.210
Reissner’s theory' —688.37 35.578 22.048
Classical plate theory' —640.39 36.098 21.622
0.14 5x5x%5 —187.741 18.9416 12.2516
TxTx17 —190.818 18.2391 11.5769
9%x9x%x9 —191.119 18.4213 11.6522
1Ix11x11 —191.096 18.2900 11.5852
13x13x13 —191.094 18.3914 11.6389
Exact solution' —191.07 18.346 11.615
Reissner’s theory' —191.02 17.906 11.453
Classical plate theory' —166.70 18.417 11.031

' Srinivas and Rao (1970).

thickness to length ratios of the plate, c/a, considered in these tables are 0.05, 0.10 and 0.14. The
tables also show solutions from classical plate theory, first-order shear deformation plate theory
and three-dimensional elasticity theory. For comparison purposes, the exact solution of Srinivas
and Rao (1970) is chosen as the benchmark here.

From the tables, one can observe that for the deflection of an orthotropic plate with thickness
to length ratios of 0.05 and 0.1, convergence of up to five significant figures can be reached at a
grid size of 11 x 11 x 11. When the plate has a thickness to length ratio of 0.14, converged results
with a minimum of three significant figures can be reached at a grid size of 9 x 9 x 9.

When the DQ solutions for central deflection are compared with the exact solution (Srinivas
and Rao, 1970), one may observe that, for plates with thickness to length ratio of 0.05 and 0.1,
accuracy to five significant figures is obtained at a grid size of 13 x 13 x 13. For plates with thickness
to length ratio of 0.14, the deflection reaches four significant figures accuracy at a grid size of
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Table 4
Convergence and accuracy studies of deflections and stresses in homogeneous SSSS orthotropic plates (a/b = 2.0) under
uniform surface load

Cuwleq o./q 0,/q
cla Grid size X=Y=Z=0.5) X=0,Y=2=0.5) X=0,Y=2=0.5)
0.05 5x5x%x5 —2028.76 45.2020 55.4610
TxTx7 —2043.00 40.2061 54.1016
9%x9x%x9 —2048.98 40.7001 54.2995
IIx1Ix11 —2048.90 40.6312 54.2696
13x13x13 —2048.89 40.6918 54.3026
Exact solution' —2048.7 40.657 54.279
Reissner’s theory' —2047.9 40.477 54.134
Classical plate theory' —1988.1 40.860 53.838
0.10 5x5x%x5 —138.554 11.2072 14.2526
TxTx7 —138.769 9.84381 13.8122
9%x9x%x9 —139.147 10.0996 13.9419
IIx11x11 —139.095 9.97419 13.8588
13x13x13 —139.099 10.0680 13.9116
Exact solution' —139.08 10.025 13.888
Reissner’s theory' —138.93 9.8460 13.743
Classical plate theory' —124.26 10.215 13.460
0.14 5x5x%x5 —39.8873 5.69865 7.53636
TxTx7 —39.7154 4.88041 7.19866
9%x9x%x9 —39.8187 5.12394 7.33862
IIx11x11 —39.7932 4.97958 7.24854
13x13x13 —39.7976 5.08019 7.30263
Exact solution' —39.790 5.0364 7.7294
Reissner’s theory' —39.753 4.8603 7.1358
Classical plate theory' —32.345 5.2118 6.8671

' Srinivas and Rao (1970).

13 x 13 x 13 for plate aspect ratios of 0.5 and 1.0. For a plate aspect ratio of 2.0, three significant
figures accuracy is reached at a similar grid size.

The mid-surface deflection converges to at least two significant figures at a grid size of
11 x 11 x 11. When compared with the exact solution (Srinivas and Rao, 1970), the DQ solution
has less than 3% error when the grid size of 9 x 9 x 9 and above are used.

It should also be commented that the convergence pattern for the deflection of the SSSS plates
is monotonic whereas the convergence pattern for the deflection of the SCSC plate is oscillatory.
For the convergence of the stresses, one can generally conclude that the convergence is oscillatory.

In addition to the above convergence and accuracy studies, some DQ solutions of a SCSC square
plate are presented in Table 5. The formula used to calculate successive percentage convergence can
be expressed as:
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Table 5
Convergence of deflections and stresses in homogeneous SCSC square orthotropic plates under uniform surface load

Cuw/eq o./q 0,/q
cla Grid size X=Y=2Z=0.5) X=0,Y=2Z=05  (X=0,Y=2Z=0.5)
0.1 5x5x5 —416.26 25.040 20.201

TxTx7 —403.97 22.059 17.688
9%x9%9 —404.50 22.186 17.657
11 x11x11 —404.67 22.015 17.467
13x13x13 —404.89 22.223 17.756
0.2 5%5x5 —34.172 6.6550 5.4631
TxTx7 —33.346 5.6559 4.6278
9%x9%9 —33.463 5.9694 4.9249
11 x11x11 —33.432 5.7329 4.6521
13x13x13 —33.462 5.8968 4.8400
0.3 5%5x5 —9.3567 3.3565 2.7976
TxTx7 —9.0779 2.5725 2.1407
9%x9%9 —9.1191 2.9151 2.4715
11 x11x11 —9.1071 2.6999 2.2578
13x13x13 —9.1154 2.8396 2.3927
0.4 5%5x5 —4.0791 2.2784 1.9242
TxTx17 —3.9198 1.4982 1.2678
9%x9%9 —3.9388 1.8546 1.5961
1 x11x11 —3.9328 1.6422 1.4032
13x13x13 —3.9357 1.7803 1.5284
0.5 5%5x5 —2.2374 1.8454 1.5746
TxTx7 —2.1281 1.0149 0.8767
9%x9%9 —2.1386 1.3975 1.2150
1 x11x11 —2.1353 1.1714 1.0163
13x13x13 —2.1364 1.3181 1.1471

Solution at (i x i x i) —Solution at (i— 1) x (i—1) x (i—1)
Solution at (i x i x i)

% converge|;;x; = x 100 (42)

where i x i x i is the grid size for which convergence is desired.

Using eqn (42), one can deduce that the worst successive percentage convergence for the SCSC
plate’s cental deflection is 0.091% at a grid size of 13 x 13 x 13. The difference between the
successive convergence percentages at grid size 13 x 13 x 13 and 11 x 11 x 1115 0.103%. From these
results, one can conclude that the DQ solution for deflection of orthotropic plates converges.
Contrary to the above favourable findings, percentage convergence for the stresses in x- and y-
directions does not seem to be that promising. The percentage convergence at a grid size of
13 x 13 x 13 for plates with thickness to length ratios of 0.1, 0.2, 0.3, 0.4 and 0.5 are 1.628, 3.882,



5316 T.M. Teo, K.M. Liew | International Journal of Solids and Structures 36 (1999) 5301-5326

5.638, 8.196 and 11.403%. As observed, convergence gets poorer as the plate thickness to length
ratio increases. It is deduced that, in order to obtain acceptable convergence for the stresses in x-
and y-directions, we should increase the number of grid points in the solution domain.

6.2. Buckling analysis

The example chosen for convergence and accuracy studies is a SSSS plate. Figures 1 and 2 show
convergence of the buckling load for different grid sizes relative to the exact three-dimensional
solution by Srinivas and Rao (1970). In these figures, plots with varying thickness to length ratio
ranging from 0.1-0.5 are given. From Figs 1 and 2, one can see that the DQ method is able to
produce accurate results even at a grid size as small as 8 x 8 x 8. After this grid size, the convergence
pattern for all the cases presented is monotonic.

Figures 3 and 4 prevent design curves for buckling factor versus aspect ratio of SSSS and
CCCC orthotropic plates. These figures show buckling curves for uniaxially (¢ = 0) and biaxially
(¢ = 1.0) loaded plates. From Fig. 3, it is observed that there is a mode shift from a lower mode
to a higher one as the aspect ratio increases for the case of the uniaxially loaded SSSS orthotropic

Px/Px*

10X10X10+--
11X11X11

Grid Size

r:;_c/a:a] —0—¢a=0.2 _5_c/a=0.3 _y_c/la=04 _o_c/a=0.5

Fig. 1. Convergence and accuracy studies of the buckling factor for an orthotropic SSSS plate with thickness to width
ratio, ¢/b = 0.1. [P,, DQ solution; P¥, exact solution, Srinivas and Rao (1970)].
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Fig. 2. Convergence and accuracy studies of the buckling factor for an orthotropic SSSS plate with thickness to width
ratio, ¢/b = 0.2. [P,, DQ solution; P¥, exact solution, Srinivas and Rao (1970)].

plate. The buckling factor for the biaxially loaded SSSS orthotropic plate decreases as the plate
aspect ratio increases. It is also evident that, if the plate thickness to width ratio is kept constant,
the buckling factor for the biaxially loaded plate is smaller than that of the uniaxially loaded plate
regardless of the plate aspect ratio.

From Fig. 4, one can see that the buckling factor for the CCCC plate decreases as the plate
aspect ratio increases. It is also observed that, similar to the SSSS plate, the buckling factor for
the uniaxially loaded plate is higher than that for the biaxially loaded plate regardless of the plate
aspect ratio. When looking at the graphs for the biaxially loaded plate, one needs to keep in mind
that this graph shows the buckling factor expressed in terms of P, while the buckling of a biaxially
loaded plate is caused by both P, and P,.

6.3. Free vibration analysis

Tables 6-9 tabulate the convergence studies for the first eight modes of SSSS, CCCC, SCCC
and CSSS plates, respectively. Three thickness to width ratios are considered in this study, i.e., 0.1,
0.3 and 0.5. From the tables, one may observe that a grid size of 10 x 10 x 10 is sufficient to furnish
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| —x—¢/b=0.5, uniaxial loading ____c/b=0.10, uniaxial loading
| —3¢—¢/b=0.15, uniaxial loading ...x...c/b=0.05, biaxial loading ;
| ...4-.. ¢/b=0.10, biaxial loading ...x...c/b=0.15, biaxial loading 3

L — i

Fig. 3. Buckling factor, k = P.y’n*/C,,, vs aspect ratio, a/b, for SSSS orthotropic plates.

converged results up to three significant figures. From the results, one cannot conclude whether
the convergence of the DQ solution is monotonic or oscillatory. The convergence characteristics
as deduced from the results changes when different plate thickness and/or boundary conditions
are used.

For all eight modes presented for the SSSS plate (Table 6), the successive percentage convergence
at a grid size of 11 x 11 x 11 when the plate thickness to width ratios are 0.1, 0.3 and 0.5, is
0.223, 0.003 and 0.008%, respectively. For the CCCC plate (Table 7), the successive percentage
convergence at a grid size of 11 x 11 x 11 when the plate thickness to width ratios are 0.1, 0.3 and
0.5, is 0.138, 0.038 and 0.038%, respectively. For the SCCC plate (Table 8), the successive
percentage convergence at a grid size of 11 x 11 x 11, when the plate thickness to width ratios are
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Fig. 4. Buckling factor, k = P,y*n*/C,, vs aspect ratio, a/b, for CCCC orthotropic plates.

0.1, 0.3 and 0.5, is 0.148, 0.039 and 0.014%, respectively. Finally, for the CSSS plate (Table 9),
the successive percentage convergence at a grid size of 11 x 11 x 11,when the plate thickness to
width ratios are 0.1, 0.3 and 0.5, is 0.226, 0.011 and 0.006%, respectively. From these observations,
one may conclude that the DQ solutions at that grid size have reached convergence.

The next study is to verify the DQ solutions and determine their accuracy. First, the DQ solutions
are normalized relatively to the exact solutions by Srinivas and Rao (1970). The normalized
frequency parameters are then plotted against the grid sizes. From Fig. 5, one may conclude that
the DQ solutions are both accurate and convergent. For this case, an acceptable converged solution
starts at a grid size of 8 x 8 x 8.
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%_O_Mode 1 5 Mode2 _,_Mode3 _«_Mode6 __Mode 7 |

Fig. 5. Convergence and accuracy study of the DQ frequency parameter for a square orthotropic SSSS plate with
thickness to width ratio, ¢/b = 0.1, [4, DQ solution; 2*, exact 3-D solution by Srinivas and Rao (1970)].

7. Concluding remarks

This paper explored the potential application of the DQ method to three-dimensional bending,
buckling and free vibration analyses of orthotropic plates. The details of the DQ formulations
were shown and the solution method was detailed. Numerous examples were employed to study
the convergence characteristics and the accuracy of the DQ method. The examples showed that a
relative coarse grid is sufficient to furnish converged and accurate results. It is, hence, verified that
the DQ solutions are correct for the cases studied, and that the method is applicable to the analysis
of three-dimensional orthotropic plates.
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Table 6
Convergence of frequency parameters, A = w./pc*/C;, of SSSS square orthotropic plates

Mode sequence number

Grid size

c/b XxYxZ 1 2 3 4 5 6 7 8

0.10 5x5x%x5 0.04682  0.16072 0.16072  0.18850  0.21328 0.22292  0.29513 0.34553
6x6x6 0.04720  0.10129 0.11639  0.16107 0.16107  0.16547 0.21703 0.31775
TxTx17 0.04743 0.10271 0.11839  0.16109 0.16109  0.16886  0.18478 0.21288
8x8xB 0.04742  0.10341 0.11895 0.16109 0.16109  0.16957 0.18966  0.21697
9x9x9 0.04742  0.10336  0.11884  0.16109 0.16109  0.16948 0.18950  0.21697

10x10x10 0.04742  0.10329  0.11880  0.16109  0.16109  0.16941 0.18918  0.21697
I1x11x11 0.04742  0.10329  0.11880  0.16109  0.16109  0.16941 0.18876  0.21697

Exact Solution' 0.0474 0.1033 0.1188 ~ ~ 0.1694 0.1888 ~

0.30 5x5x%x5 0.32708  0.48215  0.48215  0.63936  0.75009  0.82226  1.0353 1.0658
6x6x6 0.33188  0.48322  0.48322  0.64006  0.64742  0.65063  0.88264  0.95325
TxTx1 0.33202  0.48327  0.48327  0.64898  0.65075  0.65579  0.89668  0.96697
8x8x8 0.33201 0.48327  0.48327  0.65036  0.65043  0.65644  0.89788  0.96654
9%x9x%x9 0.33200  0.48327  0.48327  0.64984  0.65043  0.65615  0.89750  0.96657

10x10x10 0.33200  0.48327  0.48327  0.64972  0.65043  0.65611 0.89741  0.96654
I1x11x11 0.33200  0.48327  0.48327  0.64974  0.65043  0.65612  0.89742  0.96654

0.50 5x5x5 0.69030  0.80359  0.80359 1.0640 1.3612 1.4768 1.5065 1.7208
6x6x6 0.70395  0.80536  0.80536 1.0827 1.2275 1.2872 1.4932 1.5888
TxTx7 0.70321  0.80546  0.80546 1.0829 1.2403 1.3038 1.4927 1.6116
&x8x8 0.70342  0.80546  0.80546 1.0823 1.2428 1.3054 1.4923 1.6109
9%x9x%x9 0.70338  0.80545  0.80545 1.0823 1.2423 1.3044 1.4923 1.6109
10x10x 10 0.70338  0.80545  0.80545 1.0824 1.2424 1.3043 1.4923 1.6109
1Tx11x11 0.70338  0.80545  0.80545 1.0824 1.2423 1.3043 1.4923 1.6109

'Srinivas and Rao (1970).
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Convergence of frequency parameters, A = w./pc*/C;, of CCCC square orthotropic plates

Mode sequence number

Grid size

c/b XxYxZ 1 2 3 4 5 6 7 8

0.10 5x5x%x5 0.07824  0.24117 0.27159  0.30238 0.34121 0.34575 0.37947  0.38529
6x6x6 0.07913 0.14302  0.15453 0.20437 0.27216  0.34073 0.35755 0.39650
TxTx17 0.07888 0.14461 0.15580  0.20825 0.24043 0.25178 0.27215 0.29022
8x8xB 0.07883 0.14101 0.15420  0.20599 0.24445  0.25643 0.27215  0.29539
9x9x9 0.07884  0.14105 0.15424  0.20600  0.23173 0.25087 0.27213 0.28608
10x 10 x 10 0.07882  0.14103 0.15420  0.20598 0.23213 0.25112  0.27213 0.28646
11x11x11 0.07882  0.14101 0.15420  0.20595 0.23181 0.25091 0.27213 0.28626

0.30 5x5x%x5 0.43659  0.81503 0.82224  0.96484 1.02370 1.0928 1.1559 1.2082
6x6x6 0.44353 0.70711 0.75214  0.81674  0.95787 1.0223 1.0724 1.3009
TxTx7 0.44231 0.71215 0.75233 0.81688 0.96623 1.0195 1.0223 1.0768
8x8x8 0.44267  0.71333 0.75024  0.81682  0.96598 1.0223 1.0522 1.0766
9%x9x9 0.44253 0.71310  0.75011 0.81680  0.96574 1.0223 1.0460 1.0766
10x 10 x 10 0.44256  0.71321 0.75003 0.81677 0.96577 1.0223 1.0470 1.0766
11x11x11 0.44253 0.71315 0.74996  0.81676  0.96568 1.0223 1.0466 1.0766

0.50 5x5x%x5 0.83052 1.3594 1.4382 1.6098 1.7061 1.8610 1.9267 2.0640
6x6x6 0.85345 1.2863 1.3612 1.3880 1.7041 1.7373 1.7864 2.1239
TxTx17 0.85086 1.2960 1.3616 1.3919 1.7040 1.7549 1.7938 1.7997
I8x8xY 0.85291 1.3022 1.3615 1.3936 1.7040 1.7604 1.7935 1.8681
9x9x9 0.85251 1.3016 1.3615 1.3930 1.7040 1.7597 1.7936 1.8593
10x 10 x 10 0.85284 1.3026 1.3615 1.3934 1.7040 1.7606 1.7935 1.8626
11x11Ix11 0.85276 1.3025 1.3615 1.3933 1.7040 1.7604 1.7935 1.8619
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Table 8
Convergence of frequency parameters, A = w./pc*/C,, of SCCC square orthotropic plates
Mode sequence number

Grid size

c/b XxYxZ 1 2 3 4 5 6 7 8

0.10 5x5x%x5 0.06875  0.21860  0.22046  0.25969  0.30018  0.35062  0.36602  0.38128
6xX6X%X6 0.06973  0.13895  0.13898  0.19486  0.22002  0.25924  0.35065  0.37011
Tx7Tx17 0.06958  0.14017  0.14055  0.19889  0.22015  0.23485  0.23872  0.25933
8x8x8 0.06960  0.13698  0.13992  0.19715  0.22011 0.23909  0.24293  0.25934
9%x9x%x9 0.06956  0.13699  0.14000  0.19722  0.22012  0.22991 0.23692  0.25931
10x10x 10 0.06957  0.13700  0.13986  0.19712  0.22011  0.23034  0.23691  0.25931
1Ix11x11 0.06955  0.13696  0.13991 0.19715  0.22011 0.23001 0.23656  0.25931

0.30 5x5x%x5 0.41527  0.66140  0.77937  0.79877  0.96021 1.1020 1.1438 1.1949
6x6x6 0.42156  0.66012  0.69153  0.74728  0.77796  0.95138 1.0519 1.1102
Tx7Tx7 0.42043  0.66051 0.69799  0.74779  0.77824  0.96004 1.0080 1.0565
8x8x8 0.42074  0.66040  0.69874  0.74572  0.77822  0.95940  1.0405 1.0559
9%x9x%x9 0.42056  0.66044  0.69856  0.74557  0.77818  0.95924  1.0354 1.0562
10x 10x 10 0.42060  0.66042  0.69851  0.74549  0.77817  0.95915 1.0358 1.0562
IIx11x11 0.42055  0.66043  0.69853  0.74541 0.77816  0.95912  1.0354 1.0562

0.50 5x5x%x5 0.80817 1.1024 1.3001 1.4149 1.6091 1.6758 1.8646 1.9065
6XxX6%X6 0.82873 1.1003 1.2781 1.2967 1.3861 1.6757 1.7342 1.7528
Tx7Tx7 0.82615 1.1010 1.2882 1.2972 1.3901 1.6726 1.7510 1.7606
8x8x8 0.82764  1.1008 1.2925 1.2972 1.3914 1.6756 1.7554 1.7596
9%x9x%x9 0.82724  1.1008 1.2920 1.2972 1.3909 1.6755 1.7547 1.7601
10x 10x 10 0.82749 1.1008 1.2925 1.2971 1.3912 1.6753 1.7552 1.7600
IIx11x11 0.82740 1.1008 1.2925 1.2971 1.3910 1.6753 1.7551 1.7600
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Table 9

Convergence of frequency parameters, 4 = w./pc*/C;, of CSSS square orthotropic plates

Mode sequence number

Grid size

c/b XxYxZ 1 2 3 4 5 6 7 8

0.10 5x5x%x5 0.05562  0.16072 0.19200  0.21494  0.22475 0.28137 0.31041 0.34832
6x6x6 0.05646  0.10575 0.13283 0.16107 0.17506  0.19372  0.28117  0.31775
TxTx17 0.05652  0.10697 0.13399  0.16109 0.17853 0.18673 0.19372  0.23140
8x8xB 0.05660  0.10771 0.13377  0.16109 0.17873 0.19154  0.19368 0.23578
9x9x9 0.05654  0.10761 0.13386  0.16109 0.17879  0.19136  0.19368 0.23341
10x 10 x 10 0.05658 0.10757 0.13372  0.16109 0.17864  0.19106  0.19368 0.23341
11x11x11 0.05655 0.10756  0.13378 0.16109 0.17869  0.19063 0.19368 0.23307

0.30 5x5x%x5 0.34448 0.48215 0.57585 0.77497 0.82396  0.84339 1.04790 1.06580
6x6x6 0.35147  0.48322  0.58101 0.64281 0.66310  0.84280  0.88681 0.95325
TxTx7 0.35104  0.48327 0.58102  0.65138 0.67083 0.84195 0.90119  0.96697
8x8x8 0.35139  0.48327 0.58091 0.65296  0.67158 0.84196  0.90271 0.96654
9%x9x9 0.35125 0.48327 0.58091 0.65236  0.67145  0.84199 0.90234  0.96657
10x 10 x 10 0.35133 0.48327 0.58091 0.65228 0.67141 0.84199 0.90227  0.96654
11x11x11 0.35129  0.48327 0.58091 0.65229 0.67145 0.84199 0.90230  0.96654

0.50 5x5x%x5 0.69847  0.80359 0.95928 1.3838 1.4023 1.5082 1.6251 1.7433
6x6x6 0.71560  0.80536  0.96789 1.2359 1.2891 1.4013 1.5888 1.6355
TxTx17 0.71442  0.80546  0.96794 1.2489 1.3057 1.4000 1.6116 1.6353
I8x8xY 0.71549  0.80546  0.96774 1.2529 1.3078 1.4000 1.6109 1.6363
9x9x9 0.71527  0.80545 0.96775 1.2525 1.3067 1.4000 1.6109 1.6363
10x 10 x 10 0.71546  0.80545 0.96775 1.2529 1.3067 1.4000 1.6109 1.6362
11x11Ix11 0.71542  0.80545 0.96775 1.2529 1.3067 1.4000 1.6109 1.6362
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